//Source: https://blog.naver.com/ysahn2k/221410891895 #include #define SDA 0 #define SCL 4 const int MPU_ADDR=0x68; // I2C address of the MPU-6050 int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; long Cal_AcX, Cal_AcY, Cal_AcZ, Cal_Tmp, Cal_GyX, Cal_GyY, Cal_GyZ; void setup(){ Wire.begin(SDA, SCL, 400000); init_MPU6050(); Serial.begin(115200); } void loop(){ for(int i = 0 ; i < 2000 ; i++) { if(i % 200 == 0) Serial.println("Calculating ....."); Wire.beginTransmission(MPU_ADDR); Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H) Wire.endTransmission(false); Wire.requestFrom(MPU_ADDR,14,true); // request a total of 14 registers AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L) AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L) AcZ=(Wire.read()<<8|Wire.read()) - 4096; // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L) Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L) GyX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L) GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L) GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L) delay(10); // Sum data Cal_AcX += AcX; Cal_AcY += AcY; Cal_AcZ += AcZ; Cal_GyX += GyX; Cal_GyY += GyY; Cal_GyZ += GyZ; } // Average Data Cal_AcX /= 2000; Cal_AcY /= 2000; Cal_AcZ /= 2000; Cal_GyX /= 2000; Cal_GyY /= 2000; Cal_GyZ /= 2000; // Print Data Serial.println("End of Calculation"); Serial.print("AcX = "); Serial.print(Cal_AcX); Serial.print(" | AcY = "); Serial.print(Cal_AcY); Serial.print(" | AcZ = "); Serial.print(Cal_AcZ); //Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53); //equation for temperature in degrees C from datasheet Serial.print(" | GyX = "); Serial.print(Cal_GyX); Serial.print(" | GyY = "); Serial.print(Cal_GyY); Serial.print(" | GyZ = "); Serial.println(Cal_GyZ); while(1) {} } void init_MPU6050(){ //MPU6050 Initializing & Reset Wire.beginTransmission(MPU_ADDR); Wire.write(0x6B); // PWR_MGMT_1 register Wire.write(0); // set to zero (wakes up the MPU-6050) Wire.endTransmission(true); //MPU6050 Clock Type Wire.beginTransmission(MPU_ADDR); Wire.write(0x6B); // PWR_MGMT_1 register Wire.write(0x03); // Selection Clock 'PLL with Z axis gyroscope reference' Wire.endTransmission(true); //MPU6050 Gyroscope Configuration Setting Wire.beginTransmission(MPU_ADDR); Wire.write(0x1B); // Gyroscope Configuration register //Wire.write(0x00); // FS_SEL=0, Full Scale Range = +/- 250 [degree/sec] //Wire.write(0x08); // FS_SEL=1, Full Scale Range = +/- 500 [degree/sec] //Wire.write(0x10); // FS_SEL=2, Full Scale Range = +/- 1000 [degree/sec] Wire.write(0x18); // FS_SEL=3, Full Scale Range = +/- 2000 [degree/sec] Wire.endTransmission(true); //MPU6050 Accelerometer Configuration Setting Wire.beginTransmission(MPU_ADDR); Wire.write(0x1C); // Accelerometer Configuration register //Wire.write(0x00); // AFS_SEL=0, Full Scale Range = +/- 2 [g] //Wire.write(0x08); // AFS_SEL=1, Full Scale Range = +/- 4 [g] Wire.write(0x10); // AFS_SEL=2, Full Scale Range = +/- 8 [g] //Wire.write(0x18); // AFS_SEL=3, Full Scale Range = +/- 10 [g] Wire.endTransmission(true); //MPU6050 DLPF(Digital Low Pass Filter) Wire.beginTransmission(MPU_ADDR); Wire.write(0x1A); // DLPF_CFG register Wire.write(0x00); // Accel BW 260Hz, Delay 0ms / Gyro BW 256Hz, Delay 0.98ms, Fs 8KHz //Wire.write(0x01); // Accel BW 184Hz, Delay 2ms / Gyro BW 188Hz, Delay 1.9ms, Fs 1KHz //Wire.write(0x02); // Accel BW 94Hz, Delay 3ms / Gyro BW 98Hz, Delay 2.8ms, Fs 1KHz //Wire.write(0x03); // Accel BW 44Hz, Delay 4.9ms / Gyro BW 42Hz, Delay 4.8ms, Fs 1KHz //Wire.write(0x04); // Accel BW 21Hz, Delay 8.5ms / Gyro BW 20Hz, Delay 8.3ms, Fs 1KHz //Wire.write(0x05); // Accel BW 10Hz, Delay 13.8ms / Gyro BW 10Hz, Delay 13.4ms, Fs 1KHz //Wire.write(0x06); // Accel BW 5Hz, Delay 19ms / Gyro BW 5Hz, Delay 18.6ms, Fs 1KHz Wire.endTransmission(true); }